Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1226339.v1

ABSTRACT

Infection-neutralizing antibody responses after SARS-CoV-2 infection or COVID-19 vaccination are an essential part of antiviral immunity. This immune protection is challenged by the occurrence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529) that is rapidly spreading worldwide. Here, we report neutralizing antibody dynamics in a longitudinal cohort of COVID-19 convalescent and naïve individuals vaccinated with mRNA BNT162b2 by quantifying anti-SARS-CoV-2-spike antibodies and determining their avidity and neutralization capacity. A superior infection-neutralizing capacity against all VoCs, including omicron, developed by either two vaccinations of convalescents, or a third vaccination or breakthrough infection of twice-vaccinated naïve individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. In conclusion, an infection/vaccination-induced hybrid immunity or a triple immunization induces high-quality antibodies resulting in superior neutralization capacity against VoCs, including omicron.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-846197.v1

ABSTRACT

​​Since its recent zoonotic spill-over severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is constantly adapting to the human host as illustrated by the emergence of variants of concern with increased transmissibility and immune evasion. Prolonged replication in immunosuppressed individuals and evasion from spike-specific antibodies is known to drive intra-host SARS-CoV-2 evolution. Here we show for the first time the major role of CD8 T cells in SARS-CoV-2 evolution. In a patient with chronic, ultimately fatal infection, we observed three spike mutations that prevented neutralisation by convalescent plasma therapy. Moreover, at least four mutations in non-spike proteins emerged that hampered CD8 T-cell recognition of mutant epitopes, two of these occurred before spike mutations. A comparison with worldwide sequencing data showed that several of these T-cell escape mutations had emerged independently as homoplasies in multiple circulating lineages. We propose that human leukocyte antigen class I contributes to shaping the evolutionary landscape of SARS-CoV-2.


Subject(s)
Coronavirus Infections
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-677167.v1

ABSTRACT

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is controlled by the host´s immune response1-4, but longitudinal follow-up studies of virus-specific immunity to evaluate protection from re-infection are lacking. Here, we report the results from a prospective study that started during the first wave of the COVID-19 pandemic in spring 2020, where we identified 91 convalescents from mild SARS-CoV-2 infection among 4554 health care workers. We followed the dynamics and magnitude of spike-specific immunity in convalescents during the spontaneous course over ≥ 9 months, after SARS-CoV-2 re-exposure and after BNT162b2 mRNA vaccination. Virus-neutralizing antibodies and spike-specific T cell responses with predominance of IL-2-secreting polyfunctional CD4 T cells continuously declined over 9 months, but remained detectable at low levels. After a single vaccination, convalescents simultaneously mounted strong antibody and T cell responses against the SARS-CoV-2 spike proteins. In naïve individuals, a prime vaccination induced preferentially IL-2-secreting CD4 T cells that preceded production of spike-specific virus-neutralizing antibodies after boost vaccination. Response to vaccination, however, was not homogenous. Compared to four individuals among 455 naïve vaccinees (0.9%), we identified 5/82 (6.1%) convalescents with a delayed response to vaccination. These convalescents had originally developed dysfunctional spike-specific immune responses after SARS-CoV-2 infection, and required prime and boost vaccination to develop strong spike-specific immunity. Importantly, during the second wave of the COVID-19 pandemic in fall/winter of 2021 and prior to vaccination we detected a surge of virus-neutralizing antibodies consistent with re-exposure to SARS-CoV-2 in 6 out of 82 convalescents. The selective increase in virus-neutralizing antibodies occurred without systemic re-activation of spike-specific T cell immunity, whereas a single BNT162b2 mRNA vaccination sufficed to induce strong spike-specific antibody and systemic T cell responses in the same individuals. These results support the notion that BNT162b2 mRNA vaccination synchronizes spike-specific immunity in all convalescents of mild SARS-CoV-2 infection and may provide additional protection from re-infection by inducing more rigorous stimulation of spike-specific T cell immunity than re-exposure with SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3854495

ABSTRACT

While some COVID-19 patients maintain SARS-CoV-2-specific serum IgGs for more than 6 months post-infection, others, especially mild cases, eventually lose IgG levels. We aimed to assess the persistence of SARS-CoV-2-specific B cells in patients who have lost specific IgGs and analyzed the reactivity of the immunoglobulins produced by these B cells. Circulating IgG memory B cells specific for SARS-CoV-2 were detected in all 16 patients 1–8 months post-infection, and 11 participants had specific IgA B cells. Four patients lost specific serum IgG after 5–8 months but had SARS-CoV-2-specific-B-cell levels comparable to those of seropositive donors. Immunoglobulins produced after in vitro differentiation blocked receptor-binding domain (RBD) binding to the cellular receptor ACE-2, indicating neutralizing activity. Memory-B-cell-derived IgGs recognized the RBD of B.1.1.7 similarly to the wild-type, while reactivity to B.1.351 and P.1. decreased by 30% and 50%, respectively. Memory-B-cell differentiation into antibody-producing cells is a more sensitive method for detecting previous infection than measuring serum antibodies. Circulating SARS-CoV-2 IgG memory B cells persist, even in the absence of specific serum IgG; produce neutralizing antibodies; and show differential cross-reactivity to emerging variants of concern. These features of SARS-CoV-2-specific memory B cells will help to understand and promote long-term protection.Funding: This work was supported by the DFG (SFB TR128) and the MOMENTE program LMU (to SM).Declaration of Interest: None to declare.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-459941.v1

ABSTRACT

SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of unwanted Fc-receptor activation and antibody-dependent disease enhancement. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE-2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 variants-of-concern, B.1.17 and B.1.351. Importantly, these variants-of-concern are inhibited at picomolar concentrations proving that ACE-2-IgG4 maintains – in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.

6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3787894

ABSTRACT

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients.We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls.We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In vitro experiments show that Stimulator of Interferon Genes (STING) agonist treatment of PBMCs recapitulates the identified protective immunological signature and might therefore offer a novel therapeutic approach in early disease, without being affected by previously described anti-interferon antibodies. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.Funding: This study was supported by the Deutsche Herzstiftung e.V., Frankfurt a.M. [LN],Deutsche Forschungsgemeinschaft (DFG) SFB 914 (S.M. [B02 and Z01], K.S. [B02]), the DFG SFB 1123 (S.M. [B06], K.S. [A07]), M.J and R.Z [Z02]), the DFG FOR 2033 (S.M.), the DGF SFB1243 (W.E., L.E.W. [A14], the DGF EN 1093/2-1 (W.E., A.J.), the German Centre for Cardiovascular Research (DZHK) (Clinician Scientist Programme [L.N.], MHA 1.4VD [S.M.]), DZIF MD student programme (TI 07.003_Deák [F.D.]), FP7 program (project 260309, PRESTIGE [S.M.]), FöFoLe project 1015/1009 (L.N.), and the DFG Clinician Scientist Programme PRIME (413635475, K.P., R.K.). The work was also supported by the European Research Council (ERC 2018-ADG “IMMUNOTHROMBOSIS” [S.M.] and ERC- “T-MEMORE” [K.S.])The CORKUM cohort study was supported by LMUexcellent, funded by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder.The Koco19-Immu Study is funded by Bavarian State Ministry of Science and the Arts, University Hospital, LMU Munich, Helmholtz Centre Munich, University of Bonn, University of Bielefeld, German Ministry for Education and Research (Project No.: 01KI20271).Conflict of Interest: The authors declare no conflict of interest.Ethical Approval: In accordance with the Declaration of Helsinki, and with the approval of the Ethics Committee of Ludwig-Maximilian University Munich, informed consent of the patients or their guardians was obtained. COVID-19 patients are part of the COVID-19 Registry of the LMU University Hospital Munich (CORKUM, WHO trial ID DRKS00021225). Pseudonymizeddata was used for analysis, the CORKUM and KocoImmu studies were approved by the ethics committee of LMUMunich (No: 20-245 & No: 20-371 respectively).


Subject(s)
COVID-19 , Pneumonia
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.03.429351

ABSTRACT

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients. We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls. We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.


Subject(s)
COVID-19 , Pneumonia
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-30465.v1

ABSTRACT

Background: Starting in December 2019, the current pandemic caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) confronts the world with an unprecedented challenge. With no vaccine or drug being currently available to control the pandemic spread, prevention and PCR (Polymerase chain reaction) testing becomes a crucial pillar of medical systems. Aim of the present study was to report on the first results of the measures taken in a large German Department of Radiation Oncology, including PCR testing of asymptomatic cancer patients. Methods Pandemic-adapted hygiene regulations and prevention measures for patients and staff were implemented. A visiting ban on both wards was implemented from the beginning and medical staff and patients were required to wear face masks at all times. The waiting rooms were rearranged to ensure distance between patients of at least 1.5 meters. Clinical follow up was mainly done by telephone and all patients had to complete a questionnaire regarding symptoms and contacts with COVID-19 patients before entering our department. Educational documents were created for patients to raise awareness of symptoms and avoidance strategies for interactions with other people. Indications for therapy and fractionation schemes were adapted when possible. In a subsequent step, all new asymptomatic patients were tested via nasopharyngeal swab at our screening station shortly before their simulation CT. Results All these measures and implementations have been well accepted. Regarding the PCR testing, only 1 out of 139 asymptomatic patients of our cohort so far tested positive for SARS-CoV-2, reflecting a prevalence of 0.72% in this cancer patient population. Up to this point no staff members was tested positive. The start of the treatment for the PCR-positive patient was deferred for two weeks. Conclusion Due to the pandemic-adapted implementations, our department seems well prepared during this crisis. The initial screening helps to identify asymptomatic COVID-19 patients in order to protect other patients and our staff from infection and the observed PCR prevalence is in line with comparable studies. A regular PCR testing (e.g. twice a week) of all patients and staff would in principle be desirable but is limited due to testing capacities at present.


Subject(s)
Neoplasms , Virus Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL